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A finite-difference operator (FIX)) for the Hamilton-Jacobi equation is presented in which the non-existent solution gradients 
are replaced by the gradients of linear hubs. The appmzimation scheme (AS) corresponding to this FDO is proved to be minorized 
and majorized by ASs with FDOs based on the construction of sub-differentials and superdifferentials of local convex and concave 
hulls. This makes it i~sible to verify that the ASs converge to the linear constructions. Modifications of the FDO taking into 
account the configuration of local a~alnability domains are considered. The results of numerical experiments are presented. 
© 1997 Elsevier Scien¢~ Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We consider the problem of constructing a finite-difference operator (FDO) based on linear construc- 
tions for the approximation schemes (AS) for solving the Hamilton-Jacobi equation. We use the results 
of the theory of optimal guaranteed control [ 1, 2], convex and non-smooth analysis [3, 4] and the general 
theory of the generalized (minimax, viscosity) solution of first-order partial differential equations of 
Hamilton-Jacobi type [5, 6]. 

FDOs of various types have been developed in [7-12]. In particular [11, 12], FDOs with subdifferentials and 
superdifferentials of local convex and concave hulls have been considered and the convergence of the corresponding 
ASs has been proved. Such ASs have a number of merits. Besides, the construction of local convex and concave 
hulls is a laborious.computational procedure requiring complex programs and considerable computer resources. 
It is therefore topical to apply linear constructions to FDOs and to verify the convergence of the corresponding 
ASs. 

We propose to use local linear hulls of solutions constructed by the method of least squares. The 
proof of the convergence of the AS with a FDO of this type is based on verifying order relationships 
linking local linear hulls with local convex (concave) hulls. Note the simplicity of the realiTations of the 
formulae of the melthod of least squares when constructing the gradients of local linear hulls as compared 
with the algorithms for computing the subdifferentials and superdifferentials of local convex and concave 
hulls [11, 12]. , 

We will consider modifications of the FDO with subdifferentials and superdifferentials of convex and 
concave hulls and with gradients of local hulls in which the local constructions are carried out in 
neighbourhoods " as close as possible to the attainability domains. Such FDOs reduce computing costs 
considerably compared with FDOs in neighbourhoods symmetric about the centre of the attainability 
domain. 

The proposed AS has been used to solve a number of problems of guaranteed control using the 
formulations in [13-16]. The solution of an evolutionary game [15, 16] will be presented, which 
demonstrates the efficiency of the AS with gradients of local linear hulls. 

2. THE P R O B L E M  OF G U A R A N T E E D  C O N T R O L  AND THE BOUNDARY- 
VALUE P R O B L E M  FOR THE H A M I L T O N - J A C O B I  EQUATION 

We consider the Cauchy problem for the Hamilton-Jacobi equation 

--ff]-+H(t,~w x, ~W)~x = O, (t, x) = (t o, O) × R n 
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w(0, x) = O(x), x ¢ R" (2.2) 

We will assume that, corresponding to this boundary-value problem, we have the problem of guaranteed 
control for a dynamic system 

k = f ( t ,  x, u, v )=h ( t ,  x)+b(t ,  x )u+c( t , x ) v  (2.3) 

t ~ T = [ t  o, 01, x ~ R  n, u ~ P c R  t', v ~ Q c R  q 

with terminal payoff functional 

y(x(.)) = o(x(0)) (2.4) 

Here x is the n-dimensional vector of the system, u is the control interaction and v is the noise vector. 
The sets P and Q are convex and compact. 

The function H( t, x, s) : T x R n x R n ~ R in (2.1) is the Hamiltonian of system (2.3), i.e. it is related 
to the dynamics f(t, x, u, o) by the relation 

H(t, x, s)=<s,  h(t. x )>+mip<s ,  b(t, x )u>+ma~<s ,  c( t ,x)v  > (2.5) 

Suppose that the right-hand side.f(t, x, u, I)) of (2.3) satisfies the conventional conditions: Lipsehitz 
continuity in t, x and the extendability condition for solutions. 

A compact domain Gr ¢ T x R  n, in which to consider (2.1) and (2.3), will be defined by the invarianee 
condition: if (t., x.) ~ Gr, then (t, x. + (t - t.)B,) ~ G, for all t ~ [t., 0], Br = (b ¢ R n = {b ~ Rn: 
I I b II ~ r}, where r > K, and 

K=. x ,  u. v)ll (2.6) 

is the velocity of the system defined on a closed set G that satisfies the strong invariance condition under 
the differential inclusion 

k(t) ¢ F(t, x(t)), t ~ [t., 0], x(t .)  = x. 

F(x, y ) = { f e R  n: f = f ( x ,  y, u, v) ,  u e P ,  v aQ}, (x, y)~_T×R n 

It is clear that Gr C G. 
By the above conditions for the fight-hand side of (2.3) the Hamiitonian H(t, x, s):Gr x 1~ --* R is 

Lipsehitz continuous and positively homogeneous in s. 
A fundamental role in the solution of (2.3), (2.4) is played by the value function (t, x) -~ w(t, x): 

(7, ~ R, defined for the initial position (t.,x.), the positional strategies U = U(t,x) and the corresponding 
trajectories x(.) ¢ X(t. ,  x., U) by the formula 

a x  wft., x.) = n}jn x~.)E~,.~ x.. v)o(xfe)) (2.7) 

Optimal strategies can be constructed, for example, by the method of extrapolation shift to the 
corresponding points of the local extrema of w [ 1 ]. We know [5] that the value function w is a generalized 
maximal solution of the boundary-value problem (2.1 ), (2.2). Therefore, to construct the value function 
one can use an AS for the Hamilton-Jacobi equation. 

3. CONVEX, CONCAVE AND LINEAR HULLS OF 
P I E C E W I S E - C O N T I N U O U S  FUNCTION 

Here we will solve an auxiliary problem concerned with relations linking local convex (concave) and 
linear hulls. 

In the metric 

p| (x, y) = mla.x x i - yi[ (3.1) 
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we consider the n-dimensional neighbourhood 6 l(X, rl) = {y, [l(X, y) ~< rl, x ,y e R"} 
• ~ , , , P . . " , 

The neighbourhood Opl(x, Xx) m an n-dunenslonal cube on which we take a uniform mesh with step 
8 = rl/N. The number o f  points of the division along each axis is equal to 2N + 1. The total number 
of mesh nodes will be denoted by M, M = (2N + 1) n. 

We observe that in this case the radius of the neighbourhood is related to the division step by 

r i = N5 (3.2) 

Let a tabulated IS.ruction 

15= {(Yk, ufyk)): k = I .... J~rl (3.3) 

be given__at the nodes Yk of the uniform mesh. For t_~ function we define the following constructions. 
L (3'):_Op(x, rl) -:* R--the hyperplane closest to U in the sense of square deviation, 
f(y)" O (x, rl) -> R-- the  convex hull for U, • ~ 

g(F): Op(X, rx) ~ R-- the  concave hull for U. 
We observe that in a neighbourhood of smaller radius, which will be denoted by O^(x, r2) --* R, the 

. . . V .  • 

hyperplane L(V) lies between the convex and concave h _u_u_u_u_u_u_u_u_u_~s. The following assertion provades the precise 
ratio of the radii olF the neighbourhoods Op(x, rl) and Op(x, r2) under consideration. 

Theorem 3.1. Lelt the radii rl and r2 of O--p(x, rl) and {go(x, r2) be chosen in such a way that 

r2 

Then 

f(y) < L(y) ~ f(y), y ¢ O01 (x, r 2) (3.5) 

Proof. The local convex (concave) hulls of u(y) in the closed neighbourhood Op(x, rl) ofx of radius 
• can be defined [31] as the lower and upper bounds 

f(Y)=inf{~13tu(Yt): ~ t Y t  =Y, ~ t  =1, IS t >0} 

y~ ~Op~(x, q), y~O~i(x, r~) 

g(y)=sup{~tYtu(Yt): ~YtYt =Y, ~Yt  =1, Vt >0} 

Yt eOol(x, rl), YeOpl(x,  rl) 

Here and everywhe, re henceforth k = 1 , . . . ,  M. 
We also consider the linear hull 

(3.6) 

(3.7) 

L(y) = < A, y > + B (3.8) 

of Uin Op(x, rl). The parametersA ¢ R a, B e R can be determined from the condition for a minimum 
of the quadratic deviation of L(y) from the tabulated values of 0 

~i~]~[u(yt)-(< A, yt > +B)] 2 

This condition leads to a system of linear equations forA and B 

Z < A, - x > (Yk - x) = Z u(Yk)(Yk - x) 
k k 

(3.9) 

B=-<A, x>+-~u(yt) (3.10) 
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L(Y) can be represented by 

L(y)= u(yt )+~a ,~(y '  - xi)~(yl - xi)u(yt) 

a = (2N + 1) ~ (N + I)N / 3 

m 

Using the fact that the mesh is uniform in Opl(X , rl), we transform L(y) to the form 

l ,~[38(yi_x i) s ] 
L(y )=--~u(yk)+ M-~"~I'~ /=~-tcJ~l u(ys) (3.11) 

(Ys ..... xi + j6 ..... Ys ) Ys = Ys(i,J)-" I n 

y~=xi +m$, m = - N  ..... N, l~i ,  S = ( 2 N + I )  n-I 

We observe that the structure of (3.11) is similar to (3.6) and (3.7) and can be represented as a linear 
combination 

~(Y)= Y.cttu(Yk ), Yt ¢Opt (x, ~) (3.12) 
k 

n i - - x i  . . d . . . "  " 
. . I +~y .i .rt-.'.' 

It can be shown that the coefficients ~ in (3.12) satisfy the following two conditions from definition 
(3.6) and (3.7) of convex and concave hulls 

Y.Cttyk=y, Y.a~ =1, y¢Opi(x, rl) 
k k 

_However,  the third condition in (3.6) and (3.7) fails to be satisfied everywhere in the neighbourhood 
OR(x, rl), i.e. the coefficients 0~, may fail to benon-negative there. 

We shall specify a smaller neighbourhood Op(x, r2) in which all the functions c~(y) in (3.12) will be 
non-negative. Using the symmetry of Op(x, rl) about the centre, we transform the system of inequalities 
0~ ~ 0 to the form 

( y ' - x  i) <(N+I)NSI3, l=I . .MI2  

The resulting system can be reduced to the equivalent inequality 

I y t - x i  ~ _ ~ = r  3 
'= 3 

which defines a neighbourhood Op2(x, r3) of radius r3 and centre x in the metric P2, where 

P2(x, Y)=i~]xi-Y i} (3.13) 

If we return to the original metric Pl, the radius of the neighbourhood will be reduced by a factor o fn  

r 2 = r3/n 0.14) 

Thus, in Opl(x, r2) the coefficients o~ satisfy all three conditions in (3.6) and (3.7). From (3.6), (3.7) 
and (3.12) it follows that the linear combination L(y) lies betwce_n the lower bound f(y) and the 
upper bound g(y). Using (3.2) mad (3.14), we find that the radii of Op(x, rl) and Opl(x, r2) are related 
by 
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r2 

Remark 3.1. In computations it is more efficient to construct L(y) in the neighbourhood 

Op2(x , rl)={y, p2(x, y)<_r I, x, yeR n} 

defined in the dual norm P2. In this case the constructions involve nodes from a much smaller set (for example, 
for n = 2 the number of nodes is reduced by a factor of 2). Relation (3.4) between the radii rl and r2 of Op(x, rl) 
and Op(x, re) is pres~rved. 

4. LINEAR F I N I T E - D I F F E R E N C E  OPERATOR FOR 
THE HAMILTON-JACOBI  EOUATION 

We will now solve the above problem of constructing the value function w(t, x),  whiehis a solution 
of boundary-value problem (2.3), (2.4). We shall define the FDO for the Hzmilton--Jaeobi equation, 
Let the discretization step A of the interval T be given along with times t, t + A ~ T. Suppose that at 
t + A a Lipsehitz-continuous function x -~ u(t  + A, x) = u(x) (with Lipsehitz constant L) is defined, 
which approximates the generalized solution x -~ w(t + A, x). The  values of the function x -~ u(t, x)  = 
o(x) approximating the solution x ~ w(t, x)  at time t can be defined as the values of the FDO LA as 
follows: 

u(x)=LA(t, A, u)(x)=uo+AH(t , x, A), uo=l~.u(yk) (4.1) 
Mk 

where u(t'k) are the values of the tabulated function/)in (3.3) at the nodesyk ~ Opl(x, rA) andA is the 
gradient of the linear function L(y) defined by system (3.9), (3.10) for rl = rA. 

Theorem 4.1. Let r and Kbe  related by the relation 

r ( 1 /  42, 
~-=3n  l - N +  1 

Then the AS with the FDO u ---> LA(t, A, u) converges with convergence rate A 1/2. 

Proof. The proof of convergence will be based on the order relationship between the hypersurface 
and the convex and concave hulls (3.5) for rl = KA, re = rA. To this end we state the formulae for the 
FDOs of the local convex (concave) hulls 

u.(x)=F~(t, a, u ) ( x )=  f ( x ) +  .max (a l l ( t ,  s )+ rEoCx. KA) ,ErRor) x, 

+ f ( y ) - - f ( x ) -  < s, y - - x  >) (4.3) 

IJ*(x)=F2(t, A, u ) ( x ) = g ( x ) +  _lgin m in {(AH(t, x, s)+ 
ycO~x, KA) s~D g(y) 

+ g ( y ) -  g ( x ) -  < s, y - x >)} (4.4) 

Here f(y): O(x, rA) ---> R is the local convex hull of u(y) = u(t  + A, y)  in the dosed neighbourhood 
O(x, rA) ofx of radius rA, r > K. The set D.f(y)  is the subdifferential off(y) at the pointy 

D . f ( y )  = {s ¢ R n : f ( z ) -  f ( y )  >< s, z -  y >, z e O(x, rA)}, y ~ O(x, KA) 

The functiong(y): iF(x, rA) ---> R is the locally convex hull of u(y). The set D*g(y) is the superdifferential 
ofg(y) at the pointy 

D*g(y) = {s ~ R n : g ( z ) -  g(y)  << s, z -  y >. z ¢ O(x, rA)}, y ~ O(x, KA) 
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LA(t, A, u)(x)=Fl( t ,  A, L)(x)=F2(t ,  A, L)(x) (4.5) 

are satisfied for the aforementioned operators. It was proved in [11, 12] that F1 and F2 are monotone 

Fi(t, A, Ul)(y)<-F/(t, A, u2)(y) (4.6) 

if Ul(y ) ~< u2(y ) ~< Fi( t  , & U2)(y ). It follows from (3.4), (4.5) and (4.6) that 

F~(t, A, u)(x)<_.LA(t, A, u)(x)<F2(t, A, u)(x) (4.7) 

It has also been proved [11, 12] that the ASs with the operators F1 and F2 converge with convergence 
rate A 1;z. Then (4.7) implies the convergence of the AS with the F D O  (4.1) based on the gradients of  
local linear hulls. 

Remark 4.1. The FDO obtained above can be interpreted on the elementary n-dimensional rhombus 
R(x, 8) = {y • Rn: p2(x,y) < 8} in phase space in the metric P2 defined by (3.13) as the Lax-Friedriehs 
operator [7] 

LF(t, A, u ) = w ( x ) + A H ( t ,  x, a) 

u ( x + ~ e i ) - u ( x - S e i )  nKA<5  
a = ( a  t . . . . .  a . ) ,  a i = 25 

ei(i = 1 . . . . .  n) are the unit vectors. 

5. O P E R A T O R S  W I T H  S U B D I F F E R E N T I A L S  A N D  
S U P E R D I F F E R E N T I A L S  OF L O C A L  C O N V E X  A N D  C O N C A V E  

H U L L S  W I T H  G R A D I E N T S  OF L O C A L  L I N E A R  H U L L S  IN 
A S Y M M E T R I C  N E I G H B O U R H O O D S  

Note that the FDOs LA, F 1 and F 2 in (4.1), (4.3) and (4.4) are given in symmetric neighbourhoods 
whose dimensions are determined by the maximum speed of system (2.6) and can be as large as desired. 
The FDOs do not take into account the position in a symmetric neighbourhood of  the attainability 
domain D(t, x, A) = {y e Rn.T = x + Af(t, x, u, v), u e P, v • Q}. 

Remark 5.1. The FDOs F1 and F2 in (4.3) and (4.4) are independent of the symmetry of the neighbourhood and 
can be used for computations in any neighbourhood containing the attainability domain D(t, x, A). In the attainability 
domain itself the operators have the form 

FDI(t, A, uXx)= max yeO(t, x, a)se~m/~.v) (AH(t' x, s)+ f(y)-<s, y-x>) 

FD2(t, A, u)(x)= min min (AH(t, x, s)+g(y)-<s,  y - x > )  
yeD(t x. A)seD g(y) 

H__ere y --* f0'): O(x, rlS) -> R is the convex hull ofy  ~ u0, ) in O(x, rlS), D(t, x, 5) C O(x, qS) and y ~ gO'): 
O(x, r15) --> R is the concave huh of this function. 

The FDO LA in (4.1) can also be extended to the case of the closest neighbourhood to the attainability 
domain D(t, x, A) of system (2.3), (2.4), which can considerably reduce the amount of  computation. We 
consider an n-dimensional rectangle containing the attainability domain D(t, x, A) 

P(t, x, A ) = { y e R " :  $i<yi<_si ,  i=1  ..... n 

s i < min d i, S i > max i 
deD(t, x, A) dcD(t, x, A) d } 

Equivalently, the neighbourhood P(t, x, A) can be defined by 
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P(t, x, A ) = P ( ~ ,  q ) = { y c R n :  I~,-y,l<_q,. i = 1  ..... n} 

Here  :~ = ( i l , . . . ,  i n) is the centre and q = ( q l , . . . ,  qn) are the dimensions of the neighbourhood 
P ( i , r ) .  

Assumpt/on 5.1. Let  L(y) = (,4, y) +B be the local linear hull constructed by the method of  least squares 
in P ( i ,  r), where r = r ' , . .  , / '  is given by 

( ' )  ,/ 
q, = 3n  1 N i + l  " Ni = - 8  (5.1) 

Then the FDO Let in (4.1) can be modified in the AS as follows: 

lAD( t ,  A, u X x )  = u 0 + Marft, x, A)+ < A, x - • > (5.2) 

6. N U M E R I C A L  E X P E R I M E N T S  

As an example we will consider an almost antagonistic game of two coalitions, which can be taken as a model 
of market competition. Let x, where 0 ~< x ~< 1, be the relative part of the capital investment of the first coalition 
in the first market. Let (1 - x )  be the relative part of the capital investment of the first coalition in the second 
market. Let y, when." 0 ~ y <~ 1, be the relative capital investment of the second coalition in the first market, and 
let ( 1  - y) be the relative capital investment of the second coalition in the second market. We assume that the 
interests of the coatitions are represented by the payoff matrices 

t 
=113 61' 

The average payoffs of the coalitions are given by 

gl = CaxY-°q x-Ot2Y + a22, g2 = CbXY-~lx-~2Y + b22 

Ca =12, 0t! =4, ~t2 =3, Cb=-6,  ~1 =-3, 1~2 =--4 

The system describing the dynamics of capital investment can be modelled by the equations 

/t = p x ( l - x ) ( C a Y - a  I )+(1 -p ) ( - x+u) ,  0 <-_u<_ 1, 0<_ p<_ 1 

(6.1) 
y = q y ( l - y ) ( C b x - [ i 2 ) + ( l - q ) ( - y + o ) ,  O<-u <-1, 0<_q<_l 

The rate of ehangex of the capital investment of the first coalition depends on two factors. We assume that there 
is a group of firms ha the coalition (their relative weight beingp = 0.8) which apply the criterion of maximizing 
the current income ~h(x,y). The behaviour of this group is given by the partial derivative ~gaJ~x : CaY- oq. The 
rate of capital investment of this group is given by the first term in the first equation in (6.1) [17]. The second term 
(1 -p) ( -x  + u) describes the rate of investment of those firms that follow the control signal u(t) from the coordinating 
centre. In the second equation the rate of capital investment of the second coalition is interpreted in a similar way 
(q = 0.8). 

Following the approach described earlier in [14, 16], we define the payoff of either coalition by an integral 
functional with discount coefficient ~ This functional can be regarded as the total payoff in the infinite time interval 
[0, +**[ 

J i  = ~ ' e x p ( - g t ) g i ( x ,  y)dt, i = 1,2 (6.2) 

To construct opthnal control interactions in the above game one must consider two identical problems of 
guaranteed control with respect to Jl and J2 [13]. For example, let us consider the first one. The value function 
(x,y) -~ wl(x,y) is a solution of the Hamilton-Jacobi equation 

" i~wl ihcl y) + max{0, a-~L} + min{0, =0 --Xw.¢x..--g-x--~-y+s°tx. --~} (6.3) 
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Using the FIX) (5.1), one can define the AS for solving the Hamilton-Jacobi equation as follows. 
Consider the interval [0, T] and the division F ffi [to = 0 < tl < . . .  < tm = 7] with step A. The approximation 

function W will be defined by the following iteration procedure. We put W(7", x, y) = 0. Suppose that W(t + A, x, y) 
is unknown at some time t + A. At a time t the function W(t,x,y) is defined by 

W(t+A, x, y)=Agl(x, y ) + ( l - ~ A ) ( u 0 + < a i ,  x - 2 > + < a 2 ,  y - ~ > +  

+A(a I (px(l - x)(Cay- v~ I ) - (I - p)x) -  a 2 (qy(l - y ) (Cbx-  [~2 ) -  (1 - q)y) + 

+(l-p)max{al, 0}+(1-q)min{a 2, 0})) 

where (al, a2) is the gradient of the local approximation of W(t + A,x,y) in the neighbourhood of the pseudoccntre 
( i ,~) .  At t ffi 0 we obtain the approximation W(O,x,y) for the solution wl(x,y). 

In Fig. 1 we present a graph of the approximation function (x,y) --* W(O,x,y). Along with computing the value 
function we constructed the ma,,dmizing strategy u ~ of the first coalition. The structure of this strategy is shown in 
Fig,. 2. The square of the phase state splits into two parts. In one of them u ° - 1, the capital is invested in the first 
market, while in the other part v ° = 2, the capital is invested in the second market. 

In a similar way we constructed an approximation of the value function w2(x,y) and the mmdmizing strategy v ° 
of the second coalition in the game with payoff matrix B. 

In Fig. 3 we present the switching lines Su for the strategy u and Sv for v ° and show the trajectory TR generated 
by u and v °. This trajectory constitutes a basis for dynamic equilibrium in Nash's sense as in [13]. It can be verified 
that this trajectory converges towards the point of dynamic equih'briumDE = (0.76, 0.42), which can be determined 
from the system of equations obtained by equating the right-hand sides in (6.1) to zero. 

Note that the trajectories of the classical models with replicatory dynamic [17] tend to the static equilibrium 
point NE = (0.67; 0.33) in Nash's sense or they circulate in the vicinity of this point. The value of the payoff function 
gi(x,Y), i = 1, 2) at DE is much better (much larger) than at the point of statistical equilibrium NE. It  follows that 
the payoff functionals Ji (i = 1, 2) along the trajectories converging to the point of dynamic equilibrium have better 
values than along the trajectories converging to the point of static equilibrium. 

9 

Fig. 1. 
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